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The problem of finding a best Tchebycheff approximation to a given continuous
function f, defined on a compact portion of a plane conic section, from the set of
harmonic polynomials of degree n or less is studied. It is shown that the Haar con
dition is fulfilled by such harmonic polynomials. Interesting relationships which
exist between this problem and certain classical approximation problems are
explored. Numerical examples are given 10 illustrate the theory. © 1985 Academic

Press, Inc.

1. INTRODUCTION

The Tchebycheff or uniform approximation of a continuous function I
defined on a compact domain X is a classical problem in approximation
theory. In practice the set S of approximating functions is an N-dimen
sionallinear subspace of the space C(X) of continuous functions on X with
uniform norm

11111 =max{II(x)\: XEX}. (1.1)

In order for the approximation problem to be tractable, it is required that
S satisfy the Haar condition, that is, that the only function in S which has
N or more zeros on X is the zero function. In this case, eachfE C(X) has a
unique best approximation s* ES [2, p.80], and the error function
E =I - s* is characterized by the alternation property [2, p. 75].

The aim of this paper is to show that the space H n of harmonic
polynomials of degree n or less satisfies the Haar condition when the
domain X is restricted to be a compact subset of a conic section in 1R2

• A
mild regularity condition must be imposed in the hyperbolic case. This
allows some classical examples of Haar subspaces to be unified under one
framework and provides many interesting numerical examples.
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2. THE HAAR SUBSPACE OF HARMONIC POLYNOMIALS

A polynomial h(x, y) is said to be harmonic if it satisfies Laplace's
equation

The functions

Ah =hxx + hyy =0. (2.1 )

h2v _ 1(X, y) = 1m zV, V= 1, 2, ..., n,

v = 0,1,..., n,
(2.2)

where z =x + iy, form a basis for the N = (2n + 1)-dimensional space H n of
all harmonic polynomials of degree n or less. Note that these basis
functions can be generated by the recursion formulas

h2v - 1(X, y) = yh2v - 2(X, y) + xh 2v _ 3(X, y),

h2v(x, y) = xh2v _ 2(X, y)) - yh 2v _ 3(X, y),

(2.3 )

(2.4)

v = 1, 2, ..., n, where h_ 1(x, y) = 0, ho(x, y) = 1.
To guarantee that H n satisfies the Haar condition, the domain of

definition for hE H n must be restricted. Bezout's theorem from algebraic
geometry shows how this can be accomplished [6, p.59].

THEOREM 1 (Bezout's theorem). Let p(x, y), q(x, y) be real valued
polynomials of the variables x, y with degrees m, n, respectively. If p and q
have no nonconstant common factors, then the system of equations

p(x, y) =0,

q(x, y) = 0,
(2.5)

can have at most mn solutions (x, y) E 1R2.

When polynomials p, q have no nonconstant common factors they are said
to be relatively prime. We shall need the following special case of the
theorem where p has degree 2 and where q has degree n or less.

COROLLARY. Let

p(x, y) = Ax2 + 2Bxy + Cy 2 + 2Dx + 2Ey + F, (2.6)

where A, B,..., FER The space H n of all harmonic polynomials of degree n
or less satisfies the Haar condition on p(x, y) = °if and only if each har
monic polynomial hE H n is relatively prime to p.
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To use the corollary of Theorem 1, we must be able to classify those
quadratic polynomials p which are relatively prime to each hE H n • To rule
out trivial cases, a covering hypothesis will be made about the coefficients
of (2.6). Let

Ll I =A+C,

LIz =AC- BZ
,

A B D

Ll 3 = B C E

D E F

(2.7)

(2.8)

(2.9)

We shall henceforth assume that Ll 3 ;6°and either

(i) Llz>O with Ll I Ll 3 <0, or

(ii) LIz =0, or

(iii) LIz < 0,

so that the equation p(x, y) =° represents a real ellipse, parabola, or
hyperbola, respectively [5 p. 70].

A preparatory lemma is needed to simplify the presentation of the
classification theorem.

LEMMA. Let n ~ 2 and let p(x, y) be given by (2.6) with

B=O, IAI + ICI >0. (2.10)

For each k = 0, 1,... , n - 2 consider the two nonhomogeneous discrete boun
dary value problems

j=o, 1,..., I

and

rx _ z = rx ZI = 0, where 1= [(k + 2)/2]
(2.11 )

where m = [(k + 1)/2].

.(k+2)Arx zj + I + Crxzj~ 1 = ( - 1)1 2j + 1 '

rx _ I = rxzm + I = 0,

j=o, 1,..., m
(2.12)

(Here [.] is the greatest integer function and (.) is the binomial coef
ficient.) If neither (2.11) nor (2.12) has a solution for any k = 0, 1'00" n - 2,
then p is relatively prime to each hE H n'
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Proof By way of contradiction, suppose that P is not relatively prime
to some hEHn- We will show that either (2.11) or (2.12) must have a
solution for some k = 0, 1, 2,..., n - 2.

In view of the blanket hypothesis, P has no linear factors, so there exists
a polynomial q of degree k, 0 ~ k ~ n - 2, such that

h(x, y) =p(x, y) q(x, y).

Decompose P and q into the forms

p(x, y) = P2(X, y) +PI(X, y) +Po(x, y),

q(x, y) = qk(X, y) +qk-l(X, y) + ... +qo(x, y),

where Pi is homogeneous of degree i, i = 0, 1, 2 and qi is homogeneous of
degree j, j = 0, 1,..., k. Let

(2.13 )

The product P2qk is homogeneous of degree k + 2 and harmonic, so there
exist real numbers a, b, not both zero, such that

P2(X, y) qk(X, y) = a' h2k + 3(X, y) + b· h2k + 4(X, y)

=a·[f (_I)J(k.+2)Xk-2i+ly2J+I] (2.14)
i~O 2] + 1

+b' ct (-I)J (k~2) Xk- 2i +2y2J

(2.15 )
k+2

= I [APi + CPJ-2] Xk- J+2yJ,
i=O

where m= [(k+ 1)/2] and 1= [(k + 2)/2]. On the other hand, by using
(2.13), we can also write

P2(X, y) qk(X, y) = [Ax2+ Cy2 ][t PJXk-iyi]

where fJ -2 = fJ -I = Pk+ 1 = Pk+2 = O. Upon equating coefficients in (2.14)
and (2.15) we find that P-2' Po, ..., P21 must satisfy the difference equation

j = 0, 1,..., I. (2.16)
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Similarly, 13 _I' 131,"" 132m + I must satisfy the difference equation
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j=o, 1,..., m. (2.17)

Since a, b are not both zero we may scale either (2.16) by lib or (2.17) by
11a to obtain a solution for either (2.12) or (2.11).

THEOREM 2. Let

p(x, y) = Ax2 + 2Bxy + Cy 2 + 2Dx + 2Ey + F=° (2.18)

define an ellipse, a parabola, or a hyperbola in [R2. When (2.18) defines a
hyperbola, assume further that

k = 0, 1,..., n - 2. (2.19)

Then the space H n satisfies the Haar condition on the curve (2.18), i.e., no h,
h # 0, from the N = (2n + 1)-dimensional space H n can have more than 2n
zeros on (2.18).

Proof By the covering assumptions, p is relatively prime to each
hEH j • We must show that p is relatively prime to any given hEHk + 2 ,°~ k ~ n - 2. In so doing we shall first work under the assumption that
B =°and then remove this restriction.

Assume then that B = 0. We shall use the previous lemma and show that
neither (2.11) nor (2.12) can have a solution. Clearly, if A =0, then neither
(2.11) nor (2.12) can have a solution, so we may assume A > 0. To facilitate
the presentation we shall also assume that k is even. When k is odd the
same analysis given when k is even can be carried through with only minor
changes in detail. Finally, we assume that one of (2.11) or (2.12) has a
solution and derive a contradiction to the hypothesis of the theorem.

If (2.11) has a solution, then after solving successively for IXo, IX 2 , ... , we
find

where 1= (k + 2)/2. Analogously if (2.12) has a solution, then after solving
successively for lXI, IX 3, ..., we find
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where m = k12. If C~ 0, neither (2.20) nor (2.21) can hold. If C < 0, then

iXk+ 2= (-1)' Re[1 + i( -C/A)1/2Y+2IA = 0,

and

Since

2 Re[1 + i( - CIA )1/2Y + 2 Im[ 1+ i( _ CIA )1/2]k + 2

=Im[(A + C) + 2i( - AC)1/2y+2IA k+ 2,

we have that one of (2.20) or (2.21) holds only if

[(A + C) + 2i( -AC) 1/2t+ 2
E IR. (2.22)

This shows that for the special case when H = 0, the space H n satisfies the
Haar condition on (2.18) provided that (2.19) holds when (2.18) defines a
hyperbola.

As a final step we must remove the restriction on H. This is accomplished
by applying the orthogonal rotation

(2.23 )

to the equation

h(x, y) =p(x, y) q(x, y)

to obtain

h'(x', y') =p'(x', y') q'(x', y'),

where p'(x', y') = ax,2 + cy,2 + 2dx' + 2ey' +f Under the transformation
(2.23), a + c = A + C and ac = AC - H2. Moreover, since (2.23) preserves
harmonic polynomials, the special case of the theorem which has been
established for the polynomials h', p', and q' can be applied to obtained the
desired generalization.

We now present a simple example which illustrates the approximation of
a continuous function by a harmonic polynomial on a conic section.

EXAMPLE 1. Suppose we wish to find the best uniform approximation
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h(x,y)=ao+al y+a2x, ao, ai' a2EIR, from HI to the funcionf(x,y)=y2
on the ellipse

x = {(x, y) E IR: x2+ y2/4 = I}.

Restricting f to the ellipse X produces a closed curve r = {(x, y, z): z = y2,
(x, y) E X} in 1R3. The approximation problem is viewed as finding the
plane z = ao+ a I y + a2x which is "closest" to r in the Tchebycheff sense.
The plane z = 2 yields the best Tchebycheff approximation to r. This is
verified by noting that the error curve

E(x, y) =f(x, y) - 2ho(x, y) = y2 - 2

has four extremal points on X at (± 1, 0), (0, ±2) and thus alternates three
times on X.

We shall now point out several interesting relationships which exist
between certain classical Haar spaces and the space of harmonic
polynomials restricted to a conic section. In so doing we shall see how the
theory of harmonic polynomial approximation can serve to unify and
generalize many of the classical approximation problems.

EXAMPLE 2. Let the space H n of all harmonic polynomials of degree n
or less be restricted to the unit circle

Using the polar transformation x = cos(t), y = sin(t), °~ t < 2n, we see that

h2v(x, y) = cos(vt),

h2v _ I (X, y) = sin(vt),

v=o, 1,..., n,

v == 1, 2, ..., n,

i.e., harmonic polynomials can be used to generate the space of
trigonometric polynomials of degree n or less.

More generally, if H n is restricted to a connected segment of a conic sec
tion parametrized in the form

r(t)= P ,
1- 6 cos(t)

p>o, 6~0, (2.24)

then the basis functions for H n become the weighted trigonometric
functions

640/44/3-7

h2v(x, y) = rV(t) cos(vt),

h2v - 1(x, y) = rv(t) sin(vt),

v =0,1,..., n,

v= 1,..., n.
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Condition (2.19), which must be imposed when (2.24) defines a hyperbola,
that is when e> 1, can be expressed as

k = 0, 1,..., n - 2. (2.25)

EXAMPLE 3. The space Pn of all polynomials in one variable of degree n
or less can be generated from the space H n of all harmonic polynomials of
degree n or less, albeit somewhat unnaturally due to the fact that the
dimension of Hn is odd, N = 2n + 1, while no restriction needs to be placed
on N = n + 1, the dimension of Pn'

01l;e way to generate Pn from H n is to restrict H n to the parabola

(2.26)

On X the recursion formulas (2.3), (2.4) can be used to show that if h2v - 3,

h2v - 2 are polynomials in x of degree v, v-I, respectively, then h2v - 1 , h2v

are polynomials in x of degree v+ 1, v+ 2, respectively. Therefore, if the
basis functions for H n are ordered according to the pattern ho, h2' hI, h3'

h4 , h6 , hs, h7 , ..., then at any stage the first n + 1 of these functions form a
basis for Pn'

The spaces Hn and Pn can also be related by restricting Hn to a straight
line in [R2. Indeed let

x = x(t) =)11 t + )12'

Y = y(t) = )I 3 t + )I4,

(2.27)

1)11 I+ 1)131 > 0, be a parametric representation of a straight line. Sub
stituting (2.27) into the basis functions for H n produces polynomials in t.
Under this restriction H n suffers a loss of dimension. In the next section an
example is presented which shows the behavior of best approximations
from Hn(X) when an elliptical domain X collapses to form a line segment.
Quite interesting phenomena occur.

EXAMPLE 4. Harmonic polynomials can also be used to generate a class
of rational functions which satisfy the Haar condition. Indeed, consider a
hyperbola of the form

Ax2 + 2Bxy + 2Dx + 2Ey + F =° (2.28)

with [A + 2iB]} e [R for j = 2,..., n so that the hypothesis of Theorem 2 is
fulfilled for H n • We solve (2.28) for y to obtain

y(x) = P(x)/(2Q(x)), (2.29)
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where P(x) = - [Ax2+ 2Dx + F], Q(x) = [Ex + E]. By using (2.29) for y
in the 2n + 1 basis functions (2.2) for Hn we obtain the system of rational
functions

ho(x, y) = 1,

h2v _ l (X, y) = R2v _ 1(X)/Sv(x),

h2v(x, y) = R 2v (x )/Sv(x),

v = 1,... , n,

v = 1,..., n,

where Sv(x) = QV(x), v=l, ...,n and where R 2v _ l (X), R 2v(x) are
polynomials in x of degree 2v or less, v= 1,..., n.

3. NUMERICAL EXAMPLES

In this section we shall present numerical examples of the approximation
problem outlined in Section 2. A Remez type algorithm was used to carry
out the computation [1].

EXAMPLE 1. We approximate the function

f(x, y) = exp(x +y)

by a harmonic polynomial

h(x, y) = aoho(x, y) + ... + a4h4(x, y)

= ao + a l Y + a2x + a3(2xy) + a4(x2_ y2)

from H 2 on the sequence of ellipses

(3.1 )

(3.2)

(3.3)

which collapse to the interval -1 ~ x ~ 1 as J.l-+ 00. The errors II f - h* II,
optimal parameters, and extremal points are shown in Table I. The best
approximations display appropriate behavior in that they converge to the
best approximation to f(x, 0) = exp(x) by a polynomial p of degree 2 or
less on [-1, 1] as the ellipses collapse to [-1, 1]. Indeed, we have used
the basis 1, x, 2x2

- 1 of TchebychetT polynomials on [ -1, 1] to compute
the best approximation to f(x, 0) =exp(x) from the space of polynomials
of degree 2 or less on [-1, 1], and found the best approximation to be
given by

p*(x)= 1.2660+ 1.1302x+0.2770 (2x2-1)

= 0.9890 + 1.1302x + 0.5540x2 (3.4)
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TABLE I

Tchebycheff Approximation of f(x, y) = exp(x + y) on the Sequence of Ellipses
x 2+ lIy2 -I = 0, II = I, 10, 102, 104, 108 by a Harmonic Polynomial hE H 2

II Ilf-h*11 Parameters (x, y)-in extremal set

0.137363 ao = 1.5560 ( 0.7071, 0.7071)
a1 = 1.2712 ( -0.1622, 0.9867)
a2= 1.2712 ( -0.9354, 0.3536)
a3 = 0.6121 ( -0.7071, -0.7071)
a4=0.0000 ( 0.3536, -0.9354)

( 0.9867, -0.1622)
10 0.052335 ao = 1.0884 ( 0.9535, 0.0953)

a1 = 1.1438 ( 0.2872, 0.3029)
a2 = 1.1438 ( -0.6852, 0.2303)
a3 = 0.5597 ( -0.9535, -0.0953)
a4 = 0.4579 ( -0.1420, -0.3130)

( 0.7859, -0.1955)
102 0.045259 ao = 1.0002 ( ,OOסס.1 (OOסס.0

a1 = 1.1308 ( 0.4709, 0.0882)
a2 = 1.1308 ( -0.5254, 0.0851 )
a3 =0.5529 ( -0.9950, -0.0099)
a4=0.5420 ( 0.3464, -0.0938)

( 0.6363, -0.0771)
104 0.045020 ao = 0.9892 ( ,ooסס.1 (OOסס.0

a1 = 1.1302 ( 0.5516, 0.0083)
a2 = 1.1302 ( -0.4458, 0.0089)
a3=0.5540 ( -0.9999, -0.00(1)
a4 = 0.5539 ( -0.4278, -0.0090)

( 0.5683, -0.0082)
108 0.045017 ao=0.9890 ( ,ooסס.1 (OOסס.0

a1= 1.1302 ( 0.5600, 0.00(1)
a2 = 1.1302 ( -0.4371, 0.00(1)
a3 =0.5540 ( ,ooסס.1- (OOסס.0

a4 =0.5540 ( -0.4369, -0.00(1)
( 0.5600, -0.00(1)

with II f - p* II = 0.045017. The extremal points of the error curve are
located at -1.000, -0.437, 0.560, and 1.000. On the other hand, we see
from Table I that for jJ. = 108 the best approximation h* E H 2 can be written
as

h*(x, y) = 0.9890 + 1.l302(x +y) +0.5540(x2+ 2xy - y2) (3.5)

with II f - h* II = 0.045017. Furthermore, on each ellipse there are six
extremal points. As jJ. -+ 00 we see that one extremal point converges to
(-1,0) while another converges to (1,0). Also, one pair of extremal points
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converges from above and below to (-0.437,0.0000) while the other pair
converges from above and below to (0.560,0.000).

EXAMPLE 2. We again consider the problem of approximating the
function

f(x, y) = exp(x +y) (3.6)

by a harmonic polynomial hE H2 , but now we restrict the domain X to be
the "top half' of one of the ellipses

(3.7)

TABLE II

TchebychelT Approximation of the Function I(x, y) = exp(x +y) by a Harmonic Polynomial
hE H2 on the "Top Half' of the Ellipses x 2+ lly2 -1 =0, y > 0, Il = 1, 10, 102, 10\ 108

Il 11/-h*11

0.041130

10 0.014981

102 0.014420

104 0.013602

J08 0.013491

Parameters (x, y)-in extremal set

ao = 1.2494 ( 1.0000, 0.00(0)
at = 1.7999 ( 0.9559, 0.2936)
a2= 1.1341 ( 0.5960, 0.8030)
a3=0.7568 ( -0.1074, 0.9942)
a4 =0.2937 ( -0.7870, 0.6169)

( -1.0000, 0.00(0)
ao=0.9009 ( 1.0000, 0.00(0)
at = 1.7069 ( 0.8807, 0.1498)
a2 = 1.1902 ( 0.3182, 0.2998)
a3 =0.3753 ( -0.4640, 0.2801 )
a4 =0.6422 ( -0.9397, 0.1082)

( -1.0000, 0.00(0)
uo=0.9547 ( 1.0000, 0.00(0)
al = 1.5377 ( 0.9286, 0.0371 )
a2 = 1.1896 ( 0.4422, 0.0897)
U3 = -0.1561 ( -0.3634, 0.(932)
a4 =0.5884 ( -0.9197, 0.0393)

( -1.0000, 0.00(0)
ao = 1.0077 ( 1.0000, 0.00(0)
at = -0.2621 ( 0.9398, 0.(034)
a2 = 1.1888 ( 0.4870, 0.(087)
a3 = -6.5802 ( -0.3162, 0.0095)
a4 =0.5354 ( -0.9074, 0.0042)

( -1.0000, 0.00(0)
ao = 1.0145 ( 1.0000, 0.00(0)
at = -197.07 ( 0.9409, 0.00(0)
a2 = 1.1887 ( 0.4919, 0.0001)
a3 = -711.34 ( -0.3107, 0.0001)
a4 = 0.5285 ( -0.9059, 0.00(0)

( -1.0000, 0.00(0)
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with endpoints (-1,0), (1,0). The errors II f - h* II, optimal parameters,
and extremal points are shown in Table II.

An interesting anomaly occurs here. Indeed, considerations of continuity
might at first lead us to expect that the best approximations h* would con
verge as J1. -+ 00 to the best approximation p* as in previous example, but
they do not. After a moment's reflection it is not difficult to see why the
best approximation h* cannot converge to the best approximation p*.
Indeed, let

E(x, y, J1.) =f(x, y) - h*(x, y), 1~J1.<oo,

denote the error in the best approximation to f on the elliptic arc
X/' = {(x, Y)E [R2: x 2 + J1.y2-1 =0, y~O} and let

E(x, 0, (0) =f(x, 0) - p*(x)

denote the error in the best approximation to f(x, 0) from the space of
polynomials of degree 2 or less on the interval [ -1, 1]. For 1~ J1. < 00, the
error curve E(x, y, J1.) has six extremal points and alternates five times on
X/" while the error curve E(x, 0, (0) has four extremal points and alter
nates three times on [ -1, 1]. Since y ~°on X/' no pair of extremal points
of E(x, y, J1.) can converge to a single extremal point of E(x, 0, (0) as
occurred in the previous example. Thus E(x, y, J1.) cannot converge to
E(x, 0, (0) as J1. -+ 00. As J1. increases from J1. = 1 to J1. = 108 the error
decreases monotonically to 0.013491. This limiting error is significantly less
than the limiting error of 0.045017 of Example 1.
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